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A B S T R A C T

Hazard recognition (HR) is a critical process for safety management in the complex and dynamic occupational
environment. Although previous studies have attempted to quantify hazard recognition ability (HRA), the results
are potentially optimistic because of limitations in their experimental settings and/or single data collection
channels. This study aims to re-develop a compound HRA index that incorporates microvascular function in the
brain. First, the authors identify critical indicators of HR and design an experiment to be conducted in a real
scene. Data are then collected through questionnaires (experience and risk tolerance), eye-tracking devices (eye
movement), and near-infrared spectroscopy. Finally, discriminant analysis is applied to develop an HRA index.
The prediction accuracy of the proposed HRA index is shown to outperform previous approaches. Theoretically,
this research signals a new perspective (changes in hemodynamic properties of the prefrontal cortex) in the
assessment of HRA. The proposed HRA index can be used for onboard assessment of workers or safety inspectors,
reducing human errors and undetected occupational hazards.

1. Introduction

Generally, complex and dynamic workplaces form a hazardous oc-
cupational environment. Hazard recognition (HR) provides an oppor-
tunity for risk elimination in workplace safety (Bahn, 2013; Perlman
et al., 2014). However, up to 57% of hazards may remain unrecognized
on construction sites (Carter and Smith, 2006; Bahn, 2013; Albert et al.,
2014; Perlman et al., 2014; Albert et al., 2018). Recently, human fac-
tors have received considerable attention as a means of addressing poor
HR performance, with researchers finding that more than 70% of job-
site accidents were attributable to unsafe behavior. According to Tixier
et al. (2013), rather than deliberate violations, these unsafe behaviors
result from insufficient hazard recognition ability (HRA). Hence, as a
proactive management method, HR is regarded as a necessary ability
for both managers and employees (Quinlan and Bohle, 1991; Bahn,
2013).

Despite considerable efforts to improve workplace safety, the pro-
cess of HR remains the main barrier to safety management. In other
words, deficient knowledge about HR restricts the effect of a multitude
of safety measurements. Previous research has demonstrated that a
large number of the proposed interventions, e.g., safety training and
safety checklists, were designed without appropriate comprehension of
the HR process (Rozenfeld et al., 2010; Albert et al., 2018). To be

specific, managers are confronted with a predicament in that the way in
which risks are perceived affects how they are managed, which ulti-
mately affects the organizational safety performance (Fung et al.,
2010). It has been suggested that training has become routine and is no
longer fit for purpose because of the training methods (Kushiro et al.,
2017). Referring to previous training methods, Namian et al. (2016)
disagreed with the assumption that workers have the ability to visualize
future tasks and predict expected hazards. They emphasized the diffi-
culty of applying knowledge to basic HR. The most important reason
why current training practices are ineffective is the inferior conjunction
of the safety training design and workers’ inability to recognize hazard
prompts (Jeelani et al., 2016; Albert et al., 2018). Moreover, Chen et al.
(2016) noted that risk assessment through task complexity and in-
dividual proficiency is not cogent because of individual differences.
They considered a quantitative method essential to identify vulnerable
workers rather than merely serious hazards.

This dilemma implies the necessity of identifying the factors that
impact HRA and how their effects are transferred. With an effective
HRA index, the mechanism delineating the cognitive process of HR
could be explicitly illustrated.

In fact, many researchers have attempted to address poor HRA from
a cognitive perspective, and numerous studies have been conducted to
explore the indicators that are prominently correlated with HR. For
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instance, the most compared groups are novices and veterans (Kushiro
et al., 2017), and several researchers have proposed prediction methods
to identify workers subjected to ineffectual HRA. Hasanzadeh et al.
(2017b) used three eye-movement metrics for HRA prediction, namely
the dwell percentage, fixation count, and run time. The discriminant
function derived in their study can provide HRA prediction accuracy of
up to 66.7%. Albert et al. (2018) undertook a similar task using eight
visual search metrics (e.g., search duration, fixation count), and es-
tablished eight linear regression models. Although the results of these
studies certified the predictive power of the eye-movement metrics,
there is substantial vulnerability in current methods. Firstly, image-
based hazard detection experiments overlooked a large amount in-
formation released from the jobsite environment. Secondly, the onefold
utilization of eye-movement metrics reveals amphibolous and labile
illustrations of the decision-making phase of HR. Finally, the hazard
classification methods used to distinguish different search strategies are
either vulnerably related to the intrinsic cognitive process or have low
robustness and lack a quantitative standard. Details of these defects are
provided in the next section. All these deficiencies connote a redesign of
the HRA index and a potent experimental arrangement.

Accordingly, this study addresses the need to establish an effective
HRA index and predict the jobsite HRA. To conquer the aforementioned
deficiencies in previous research, the authors designed an experiment
based on a real-world inspection of the civil laboratory of Tsinghua
University, as a simulated construction site, in which participants
searched for hazards spontaneously. During the inspection, a portable
near-infrared spectroscopy (NIRS) device and an eye tracker were em-
ployed to record the cognitive features of the visual search process. This
is the very first attempt to engage this state-of-the-art instrument, i.e.,
the NIRS device, into safety management research. Reassuringly, the
results demonstrate the necessity of this approach. Moreover, the au-
thors classified the search tasks according to the visual clutter of the
scene containing the hazard, which proved to be a valid classifier re-
garding the cognitive load (Liao et al., 2017; Sun et al., 2018). The
results of the subsequent multivariate analysis of variance (MANOVA)
verify the correlation between the indicators and HRA. The follow-up
discriminant analysis shows that the proposed HRA index is suitable for
HRA prediction, achieving an accuracy of up to 74.1%. Conclusively,
the HRA index contributes to effective HRA prediction. Furthermore,
for a detailed interpretation, this study reveals the different search
strategies used across the visual clutter levels and among the HRA
groups. Such conclusions could serve as a reference for the future de-
sign of safety interventions.

2. Literature review

2.1. Research gaps in real-time monitoring

2.1.1. Nonconformity of image-based experiments with real-time HR tasks
The first defect in previous experiments concerns the image-based

simulation of HR tasks. Numerous researchers have conducted simu-
lation experiments to explore the cognitive process of HR, with some
creating a digital construction site to replicate hazards. Dzeng et al.
(2016) implemented an experiment based on a site model using the
Google Sketchup software to compare hazard search patterns between
experienced and novice workers. Nevertheless, many studies have used
planar stimuli to display jobsite scenarios for the HR task, such as
images and videos. For instance, to detect at-risk workers, Hasanzadeh
et al. (2017b) selected 35 images as experimental stimuli from a sce-
nario image pool. Similarly, Pandit et al. (2019) used 16 case images
depicting diverse construction operations to explore the impact of the
safety climate on HR. Additionally, Kushiro et al. (2017) asked parti-
cipants to detect risks while watching site videos and examined the
effectiveness of a video-based training tool. Two-dimensional materials
have many merits, such as a controllable inspection process, fixed vi-
sual angle, and unified view of the horizon. These features make

subsequent data analysis very convenient. However, image-based tasks
are substantially different from how the hazards are perceived on
construction sites (Borys, 2012). Some differences are inevitable re-
garding the expression of dynamic and intricate scenarios and sur-
roundings such as weather, noise, diverse tasks, and equipment
(Rowlinson et al., 2014; Kushiro et al., 2017). This might induce dif-
ferent search strategies from practical HR. For instance, Perlman et al.
(2014) found that risk recognition and perception can be improved
using a virtual construction site rather than pictures. The associated
dimensionality reduction would lead to information shrinkage and
changes in the cognitive process. Thus, it will inevitably induce dis-
parity for the comprehension of HR.

Therefore, seeking an authentically simulated site is vital for ex-
periments toward an HRA index. This study strives to imitate a con-
struction site in a civil laboratory, which is extensively consistent with
the jobsite concerning potential hazards. Moreover, the laboratory is
rather static, with a constant situation maintained as the holistic ex-
periment continues for several days. This guaranteed that the experi-
mental settings were the same for each participant.

2.1.2. Eye-tracking metrics: limited power for explanation
Another research gap lies in the monotonous utilization of eye

trackers. Eye-tracking devices, which are excellent at measuring eye
position and movement, are attracting increasing attention in state-of-
the-art studies on HR. This is because HR is believed to be a visual
search task, and the oculomotor features are known to correlate with
the allocation and shift of visual attention (Dzeng et al., 2016; Albert
et al., 2018). In these studies, fixations and saccades are the two pri-
mary eye-movement events employed to illustrate the visual search
patterns (Crundall and Underwood, 2011). Saccade and fixation loca-
tion indicate the focal orientation of the eye and the allocation of at-
tention. Additionally, fixation duration demonstrates cognitive interest
as well as difficulty. A long fixation duration demonstrates that the
observer is either attracted to or confronted by an obstruction in a
certain area. This would undoubtedly lead to an inconclusive correla-
tion between the HRA and fixation measurement. Precisely,
Hasanzadeh et al. (2016) reported a shorter dwell time in the areas of
interest (AOIs) for workers with high levels of situation awareness. In
contrast, Albert et al. (2018) asserted that those who recognized more
hazards spent more time examining the workplace as well as the hazard
itself. Albert et al. (2018) illustrated that personalized training could
elevate HRA scores for a relatively constant fixation duration. Ad-
ditionally, Indrarathne and Kormos (2017) found that the relationship
between fixation duration and working memory factor score differed
significantly in various memory conditions. Liao et al. (2017) reported
no significant relationship between HR accuracy and fixation duration.
These paradoxical conflicts suggest that the mere employment of eye-
movement metrics is deficient for predicting HRA. A metric that is
strongly related to the cognition performance is a requirement for the
HRA index.

2.1.3. Insufficient hazard classification methods
For the subsequent analysis, researchers believe that diverse visual

strategies should be employed when searching for various types of
hazards. Accordingly, they have classified hazards into several groups.
Many prefer to classify hazards according to injury type. For instance,
Dzeng et al. (2016) mimicked hazards regarding accidents such as falls,
collapses, and electric shocks in the Sketchup model. Such classification
methods were also used by Hasanzadeh et al. (2017b) and Perlman
et al. (2014). Simultaneously, the underlying causes of the hazards were
widely used to classify the hazards. Namian et al. (2016) classified
hazards into radiation, gravity, chemical, pressure, temperature, and so
on, and Pandit et al. (2019) displayed hazards in the same way. Al-
though there are differences between the HR strategies observed across
the hazard groups, the classification methods show a weak association
with the HR process. For hazards associated with a certain injury, the
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scenes may differ so much that the various levels of detection com-
plexity would involve disparate visual search processes. In contrast,
some researchers used classification methods pertaining to the diffi-
culty of detection. The typology of hazards used by Bahn (2013) con-
sists of several categories, including obvious and hidden. A similar
scheme was used by Dzeng et al. (2016). Despite efforts to address the
connection between the typology and cognitive process, such classifi-
cation methods are qualitative and difficult to reproduce. The task
difficulty varies according to the knowledge, experience, and other
individual factors of the judge.

On the basis of the above, this study utilized visual clutter for ha-
zard classification. Visual clutter quantifies the distractors in the scene
that cause visual interference. Several studies have determined that
visual clutter negatively affects visual search ability (Schmieder and
Weathersby, 1983; Ji et al., 2010; Doyon-Poulin et al., 2014). As for
HRA, Liao et al. (2017) and Sun et al. (2018) reported cognitive dis-
crepancies in HR under different visual clutter levels. Thus, it is im-
portant to take visual clutter into account for hazard typology.

2.2. Index development

2.2.1. Visual search performance from a cognitive view
To establish the HRA index, it is important to identify the indicators

that help to predict HRA. To probe the indicators affecting HRA, the
authors reviewed the literature on the indicators demonstrating visual
search ability. HR is well acknowledged as a visual search task (Jeelani,
2016; Liao et al., 2017; Sun et al., 2018), and previous research has
shown the interrelationship between visual search strategies and HRA
(Geoffrey et al., 2010; Hasanzadeh et al., 2017b). Thus, it is feasible and
valid to analyze the HRA indicators associated with visual search.

Generally, the process of visual search is separated into search and
decision stages (Drury, 1975; Spitz and Drury, 1978; Liao et al., 2017).
In the search phase, the observer seeks a suspected item of potential
hazard. The observer then turns to the next phase to determine whether
the item is the target or not. The current study identifies hazard in-
dicators based on this search–decision model.

2.2.2. Indicators for the search phase
As mentioned above, eye-tracking devices are typically used to

monitor oculomotor behavior. When introduced to an unacquainted
situation, the observer has to glance and scan the scene and find the
potential target. The saccade-related metrics recorded by the eye
tracker can determine the efficiency of the search phase. As for the
specific metric employed, some researches have used the fixation per-
centage to measure the attention allocation for the search and decision
phases. Liao et al. (2017) reported the significant influence of fixation
time percentage on the detection accuracy. However, Albert et al.
(2018) found no significant changes in either fixation count percentage
or fixation time percentage. Explaining this result, they argued that the
magnitude of both fixation count and fixation time in AOIs increased,
although the total amounts of fixation count and fixation time also
increased accordingly. Therefore, this study employs the time to first
fixation in AOIs to represent the search efficiency. Time to first fixation
is the time spent on the distractors before the participant first perceives
the target hazard. Hasanzadeh et al. (2017a) found that experienced
workers spent less time on the distractors before they initially fixed on
the target hazard. Time to first fixation is also monitored to verify its
capacity to predict HRA.

2.2.3. Indicators for the decision-making phase
Regarding the decision-making phase, researchers typically consider

fixation metrics in AOIs. However, as mentioned above, the results of
the fixation metrics differ significantly because of their complexity.
Efforts have been made to develop other methods for measuring the
cognitive performance in the decision phase. It is noteworthy that Chen
et al. (2016) equipped participants with wearable

electroencephalography (EEG) safety helmets to collect neural in-
formation while executing HR tasks. They found a significant correla-
tion between hazard perception and mental workload. This inspires us
to focus on the vital signs as a proxy for the decision phase. Even so,
methodologies such as EEG and functional magnetic resonance imaging
(fMRI) constrain the body movements. In turn, although new EEG in-
struments are portable, the setup time and susceptibility to motion
artifacts lead to discrepancies and unstable results (Ayaz et al., 2012).
In contrast, the cerebral oxygen metabolic activities recorded by NIRS
devices have recently attracted interest in the discipline of driving be-
haviors (Derosiere et al., 2014; Liu, 2014; Orino et al., 2015; Bruno
et al., 2018). As the cognitive process of HR is analogous in part to
driving behavior, NIRS has the potential capacity for measuring the
decision process. Here, a brief introduction about the NIRS tool as a
potential method for HRA prediction is provided.

NIRS is a noninvasive brain imaging technology that quantifies
changes in hemodynamic properties such as oxygenated hemoglobin
(Oxy-Hb), deoxygenated hemoglobin (Deoxy-Hb), and total he-
moglobin (T-Hb) in the brain. Specifically, an increase in Oxy-Hb and a
concomitant decrease in Deoxy-Hb are indicators of neural activity
(Hoshi, 2010). The NIRS device has high temporal resolution of up to
10ms, is portable, and can tolerate certain motion artifacts (Liu et al.,
2016). Similar to EEG, it can concentrate on certain regions of the brain
through laser emitters and probes, and enables an exploration of cere-
bral activity (see Liu et al. (2016) for the detailed mechanism). In terms
of driving safety, the prefrontal cortex (PFC) was the most active re-
gion, as indicated by concentration changes of Oxy-Hb (Tomioka et al.,
2009; Tsunashima and Yanagisawa, 2015). Other encephalic regions,
such as the parietal lobule (PL), were also found to be essential, but
partially labile (Schall et al., 2007). Accordingly, driving research re-
gards PFC as the vital region for cognitive safety processes. In addi-
tional, Oxy-Hb is often assessed because it is highly sensitive to regional
cerebral blood flow, and thus illustrates cortex activity.

Besides physiological indicators demonstrating cognitive strategies,
there is another individual factor that significantly affects decision-
making, namely risk tolerance. In Woodcock’s (2014) safety inspection
model, it is critical for an inspector to decide whether to report the
recognized hazard by asking him/herself “Is the hazard tolerable?”
Woodcock found that experienced inspectors were more tolerable to
risks, and would thus mark the hazard as “accept but monitor.”
Lichtenstein et al. (1978) pointed out that overconfidence in the ability
to control accidents leads to an underestimation of hazards. Wang et al.
(2016) noted that risk tolerance is one of the main reasons for unsafe
behaviors. Hence, it is necessary to take risk tolerance into account for
HRA prediction.

2.2.4. Experience affecting both phases
Experience is a potential indicator for HRA that affects both the

search and decision phases (Schuster et al., 2013; Hout and Goldinger,
2015). Numerous studies have reported that experienced workers per-
formed differently from novices in various aspects of visual search
tasks, such as flexible visual scanning patterns (Hosking et al., 2010),
reduced search time (Nodine et al., 2002), comprehension of auditory
cues (Duffy, 2003), risk perception levels (Shin et al., 2014), and
dealing with uncertainties (Woodcock, 2014). Therefore, experience is
a potential predictor of HRA. Woodcock (2014) concluded that ex-
perienced inspectors could take advantage of knowledge derived from
training, documented reports, and discussions with other inspectors.
Similarly, Ericsson (2017) explained that experience is accumulated
through training and deliberate practice. In addition, research has
shown that familiarity with a task would induce degradation in risk
perception ability (Zimolong and Elke, 2006). Previous studies on the
acquisition of experience serve as references for the experience metric
used in this study.

In summary, previous studies fall short in certain aspects, and thus,
a broad range of measures is needed. This requires consideration of
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both the search and decision phases, involving a hybrid system based
on multimodal indicators for more robust performance (Yang et al.,
2010; Dong and Hu, 2011). Concurrently, the literature review suggests
an experiment based on real-world inspection tasks and a hazard clas-
sifier directly associated with the cognitive process. Based on these
requirements, this study establishes an HRA index including metrics for
both eye-tracking and NIRS devices, as well as a self-reported ques-
tionnaire.

3. Methodology

3.1. Research framework

As shown in the research framework in Fig. 1, this study was per-
formed in two sections. First, an experiment based on a real-world HR
task was designed and conducted using portable eye-tracking equip-
ment and NIRS devices. Subsequently, MANOVA and discriminant
analysis were employed to determine the impact of each indicator on
the HRA.

3.2. Participants

Forty-eight civil engineering students were invited to participate in
this experiment. This sample size is considered sufficient for eye-
tracking and NIRS studies (Bonetti et al., 2019; Pernice and Nielsen,
2009). The sampling scale was constrained to civil engineering students
to ensure that all subjects possessed a general perception of construc-
tion safety risks. Overall, their uncorrected or corrected visual acuities
were normal, and they were all in good neurological and cardiovascular
health. Additionally, each had acquired safety training about the civil
laboratory on his or her entrance to the college. No participants re-
ported relevant injury experience in the laboratory.

The participants were fully informed about the experimental pro-
tocol, and informed consent was obtained before participation. They
received some financial compensation for taking part in the study.

3.3. Experimental conditions: simulated jobsite settings

Approved by the department of civil engineering, the experiment
was conducted in the civil engineering laboratory during a holiday
period, when no one was working in the laboratory. The laboratory was
chosen for several reasons. First, the hazards on the jobsite should be
consistent with those on a construction site. Second, stationarity of the
site condition is necessary for the experiment. Thus, an actual con-
struction site is not appropriate because of the ongoing work and
variability. The civil laboratory, however, can be kept in a consistent
condition on weekends. Additionally, it can act as an imitation con-
struction site with similar instruments and analogous hazards. The
primary sources of hazard in the laboratory are the massive instru-
ments, combustible materials, fall protection systems, and electrical
equipment, which are similar to those on a real construction site.

The core of the jobsite arrangement is to certificate the hazards on
the site and determine the route of the HR task to standardize the ob-
servation perspective. The authors invited two experts in charge of la-
boratory safety to participate in a pre-experiment. With high sensitivity
of hazards and over 30 years’ experience in the laboratory, the experts
were asked to identify as many hazards as possible. Moreover, the risk
checklist issued by the department and the university were applied to
ensure that all potential hazards had been identified. Finally, nine ha-
zards pertaining to various risk sources were confirmed as the experi-
mental targets. Table 1 presents a description of the hazards.

The origin, terminus, and route were determined according to the
experts’ suggestions. The final route was shaped like an upside-down
“U,” with hazards distributed evenly on both sides of the passageway.

Fig. 1. Research framework.
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Additionally, participants were kept distant from some hazards and
other hazards were either inactivated or protected, only used for dis-
play, to eliminate any potential injuries to the participants.

3.4. Devices

3.4.1. Eye-tracking device
The wearable eye-tracking devices utilized in this experiment were

Tobii Glasses II, made in Sweden. These have a gaze sampling fre-
quency of 100 Hz and scene camera recording angles, i.e., visual angle,
of 82° (horizontal) and 52° (vertical). Wireless data transmission allows
subjects to observe and move without restriction.

3.4.2. NIRS device
A 20-channel NIRS instrument (NirSmart, Huichuang Co., China)

that generates near-infrared light at wavelengths of 760 nm and 850 nm
was utilized to monitor the changes in optical density at a sampling rate
of 12 Hz. This was subsequently converted into Oxy-Hb and Deoxy-Hb
concentration changes. Six probes and ten emitters were placed side by
side at intervals of 3 cm. They were configured evenly over the PFC
regions of the subjects, as shown in Fig. 2. During the placement of the
probes, the real-time signal intensity of each channel connecting the
light source to the receiver was assessed and displayed by the software.
When the signal quality was acceptable, a zero baseline was set, and the
experimental protocol was executed.

3.5. Experimental design

The experiment was conducted in four steps. The time of each step
was constrained, although the actual time consumption was subject-
dependent. Generally, the experiment was completed in 25min. The
detailed time course of the four steps is presented in Fig. 3. To mark the

time and place where a hazard was detected, the subjects were
equipped with a laser pointer. They were asked to mark the hazards
with the laser pointer only after they had completed the searching,
confirming, and judging stages, and had decided to report the hazard.
The time logs were marked once the subject used the laser pointer. After
the HR task, the event logs of the recognized hazards recorded by the
eye-tracking glasses were displayed and the subjects were asked to
name the hazard for subsequent evaluation.

3.6. Measurements

3.6.1. Eye-movement data
The AOI metrics derived from the oculomotor data were analyzed to

identify the cognitive features in the search phase. The crucial matter of
data processing normalized the AOIs and determined the beginning and
end of the event.

The Tobii Pro Lab software was employed to derive the eye-move-
ment metrics, which automatically matches the gazes in the recorded
video with a background photo. Further analysis of AOI metrics based
on that photo can then be conducted. For a constant standard back-
ground photo, the authors selected the most common one from the
video snapshots of each participant. The AOIs were defined according
to the outlines of the recognized hazards drawn by each participant.

The beginning of the recognition process for a specific hazard was
set when the item was first recorded by the camera. That is, the hazard
was assumed to be ready for recognition when it appeared in the video.
The end of the event was the time when the participant began to point
out the hazard using the laser pointer.

3.6.2. NIRS data
The optical signals were filtered using a fourth-order digital low-

pass Butterworth filter with a cutoff frequency of 0.1 Hz to remove the
heart rate and respiration responses. Subsequently, movement noise
was removed using the moving standard deviation and spline inter-
polation routines in Matlab 2017a. The oxyhemoglobin concentrations
recorded over the 20 channels were then formed, and the average level
for the search process of each hazard was calculated. As this study aims
to explore the relationship between HRA and a series of physiological
and psychological indicators, rather than focusing on the specified
cortical regions activated during the process, the average level of the 20
channels was utilized to represent brain activity in the whole forehead
area. The process of normalization was performed in the subsequent
discriminant analysis.

3.6.3. Risk tolerance
To measure risk tolerance, researchers often use a self-reported as-

sessment method based on questionnaires (Hunter, 2002; Wang et al.,
2016). The eight-question scale is popular and is known to have good
reliability (Wang et al., 2016). Specifically, eight hazard scenes were
provided pertaining to common construction injuries, e.g., fall protec-
tion and electronic safety. The participants were asked “To what extent
are you willing to accept the risk scenario?” and assigned a rating from

Table 1
Hazard types and descriptions.

No. Type Description

1 Fire prevention and control Erroneous storage and preservation process of acetone
2 Electrical safety Multiple electrical sockets connected in series
3 Fall protection Obstacles in the passageway
4 Heavy equipment Massive loading devices with sharp angles
5 Fall protection Uncovered grooves on the ground threatening a fall
6 Electrical safety Unprotected and unclosed electrical compartment
7 Fire prevention and control Inaccessible fire hydrant covered with sundry objects
8 Struck-by Vertical and unstable rebar without protection
9 Struck-by Perilous pre-stressed component without protection and warnings

1
2

3

4
5

6

7

8
9
10

11

12
13
14

15

16
17

18

19

20

Fig.2. Probe and emitter arrangement. Note: Red points denote emitters; blue
points denote probes. The full color version of this figure is available online.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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1 (totally unacceptable) to 5 (totally acceptable). The risk tolerance
scale used by Wang et al. (2016) was translated into Chinese for this
research. The scale data were demonstrated to meet the requirements of
both reliability and validity. Cronbach’s alpha was calculated at 0.824
(greater than 0.6) and, for the validity test, the Bartlett test of sphericity
scored 173.676 with a significance level of 0.000 and the Kai-
ser–Mayer–Olkin measure of sampling adequacy was 0.754 (greater
than 0.5).

3.6.4. Experience
The experience was measured using a multi-dimensional approach.

The participants’ major areas of study cover diverse realms. Thus, some
of them conduct research in the laboratory quite frequently, whereas
others seldom enter the room. Consequently, the comprehension of the
lab, especially in terms of the potential hazards, differs among the
subjects. Considering the factors influencing experience, the authors
measured the subjects in terms of three aspects: (1) working frequency
in the laboratory; (2) a self-reported assessment of the comprehension
and familiarity with the laboratory hazards; and (3) for an objective
evaluation of safety knowledge, a quiz comprising three questions se-
lected from the Experimental Safety Test Library of Tsinghua
University. Finally, the working frequency, laboratory familiarity, and
knowledge quiz score were integrated into one indicator representative
of experience.

3.6.5. HRA score
Initially, the individual HRA scores were calculated according to the

number of correctly recognized hazards. Generally, 0–5 hazards were
recognized. For discriminant analysis, the participants were divided
into three groups according to their HRA scores, namely high, medium,
and low groups.

3.6.6. Visual clutter
The visual clutter of the background images was calculated ac-

cording to four indices (color, size, distinction, and orientation). A
detailed illustration of the computation process is provided in the
methodology section of Liao et al. (2017). With the exact value of visual
clutter, the hazards were divided into three groups: high, medium, and
low visual clutter groups (i.e., H, M, L). Subsequent analysis was

conducted separately for each group.

3.7. Data analysis

3.7.1. ANOVa
ANOVA was used to determine any macroscopic discrepancies

among the personal characteristics, eye movements, and NIRS metrics
in different HRA groups. Both multivariate and univariate ANOVA were
employed. Although this research is based on a small sample size, the
number of samples exceeds the number of dependent variables. Thus, it
fulfills the requirements of the method.

3.7.2. Discriminant analysis
Discriminant analysis was conducted to probe the HRA index for

two main purposes. First, it was expected that the coefficients would
reveal the impact of the indicators on the HRA. Furthermore, as an
effective approach for classification and prediction, the derived func-
tions could serve to predict HRA according to the person’s character-
istics and instrument metrics.

4. Results

4.1. Assumptions check

Several assumptions were checked before applying MANOVA and
discriminant analysis, and no violations were found. (1) The samples
were independent in each group as each participant only belongs to one
HRA group. (2) The outliers were eliminated based on boxplots and
Mahalanobis distances. (3) The normality of the data distribution was
confirmed by Shapiro–Wilk tests. (4) The bivariate correlation between
the dependent variables was significant according to Pearson correla-
tion analysis. (5) No multicollinearity was present, with the variance
inflation factor measured at up to 2.600 (< 3). 6) No homogeneous
matrices were found by Box’s M test, thus confirming the equality of the
matrixes of variance and covariance.

4.2. Descriptive statistics

Several descriptive statistics are presented in Table 2. These

Fig. 3. Experimental protocol.
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descriptive statistics are provided across visual clutter groups.
Specifically, the mean values of time to first fixation in the H, M,

and L groups were 1.705, 1.173, and 1.275 with standard deviations of
1.231, 0.694, and 1.785, respectively. The corresponding mean values
of Oxy-Hb were −0.058, −0.004, and −0.052 with standard devia-
tions of 0.194, 0.245, and 0.267.

4.3. Visible differences between the HRA groups

Overall, the MANOVA results revealed significant differences be-
tween the HRA groups according to Wilks’ Lambda. Table 3 presents the
MANOVA results. In visual clutter groups H, M, and L, the p-values of
Wilks’ Lambda ranged from 0.002 to 0.041, indicating significant dif-
ferences in the four HRA index variables under the different visual
clutter levels. These results demonstrate the potential of the current
four indicators to predict HRA.

4.4. Influence of HRA on different index variables

Although the MANOVA results signify that the values of the four
index variables differ in the three HRA groups, it still remains implicit
as to which variable was influenced by the HRA. To determine the
mechanism of how the HRA impacts the four index variables, univariate
ANOVA was conducted.

Table 4 helps to identify the particular variable affected by the HRA.
Additionally, the significance level was adjusted using the Bonferroni
revision method. At a statistical significance of 0.05, the p-value should
be less than 0.0125. According to the results, there are various com-
binations of index variables that are impacted across the visual clutter
groups. In group H, the variables of experience and Oxy-Hb showed a
discrepancy in different HRA groups (p= 0.004 and 0.002, respec-
tively). When the visual clutter is low, experience was still impacted by
the HRA (p= 0.009), whereas no significant differences appeared for
Oxy-Hb (p= 0.024 > 0.0125). However, time to first fixation was
more sensitive to HRA under low visual clutter (p= 0.002). Group M

had the highest number of variables affected by HRA. In particular,
differences existed among three of the four variables (all but risk tol-
erance), which implies that under medium visual clutter, the variables
of experience, time to first fixation, and Oxy-Hb differed significantly
across the HRA groups.

In summary, the results illustrate noteworthy discrepancies in ex-
perience across different HRA groups, whereas risk tolerance does not
appear to differ according to HRA. Additionally, the eye-movement
metric of time to first fixation and the neural-activity metric Oxy-Hb
were impacted by HRA under certain circumstances. Specifically, the
differences in time to first fixation were not significant when visual
clutter was high, whereas those in Oxy-Hb were not significant when
visual clutter was low.

Post hoc tests were conducted using Tukey’s Honest Significant
Difference adjustment to reveal information about how the index
variables were affected by HRA. The results are as follows.

For high visual clutter, Oxy-Hb was larger in the low HRA group
than in both the medium and high HRA groups (p=0.077 and 0.001,
respectively). Moreover, the high HRA group possessed significantly
more experience than the medium and low groups.

For medium visual clutter, the high HRA group spent more time
conspicuously searching the surroundings (showing larger time to first
fixation) than the medium and low HRA groups (p=0.001 and 0.058,
respectively). Similarly, they had more experience than the medium
and low HRA groups (p= 0.045 and 0.012, respectively). As for the
NIRS metric, Oxy-Hb in the high HRA group was significantly lower
than in the low HRA group (p=0.009).

For low visual clutter, time to first fixation in the high HRA group
was greater than in the other two groups (p=0.005 and 0.006, re-
spectively). The high HRA group also exhibited lower Oxy-Hb and
possessed more experience than the low HRA group (p=0.029, 0.009).
In addition, they had a lower risk tolerance than the medium group
(p= 0.083).

4.5. Contribution of different indicators to HRA prediction

The previous sections explored how the HRA indicators differ across
the various HRA levels. This indeed validates the potential of the HRA
index to predict HRA. Thus, discriminant analysis was used to predict
HRA through the index, with all index variables inserted into the
equation at the same time.

Discriminant analysis provides several functions with which to
forecast the classification. Specifically, the number of functions is one

Table 2
Descriptive statistics.

Visual
clutter
groups

Indicators Mean Std. deviation Minimum Maximum

H Experience 2.864 1.001 1.000 4.429
Risk tolerance 1.574 0.464 1.000 3.125
Time to first
fixation

1.705 1.231 0.380 4.918

Oxy-Hb −0.058 0.194 −0.544 0.196

M Experience 2.764 1.013 1.000 4.429
Risk tolerance 1.528 0.380 1.000 2.625
Time to first
fixation

1.173 0.694 0.393 2.835

Oxy-Hb −0.004 0.245 −0.390 0.642

L Experience 2.825 0.966 1.000 4.429
Risk tolerance 1.558 0.458 1.000 3.125
Time to first
fixation

1.275 0.785 0.185 3.119

Oxy-Hb −0.052 0.267 −0.613 0.467

Table 3
Multivariate tests based on Wilks’ Lambda among the HRA groups across dif-
ferent levels of visual clutter.

Visual clutter groups Value F Hypothesis df Error df Sig.

H 0.485 2.400 8.000 44.000 0.030**

M 0.332 3.862 8.000 42.000 0.002***

L 0.488 2.266 8.000 42.000 0.041**

Note: ***: significant at 0.01 level; **: significant at 0.05 level.

Table 4
Tests of between-subject effects on HRA groups across different levels of visual
clutter.

Visual
clutter
groups

Predictors Sum of squares df Mean square F Sig.

H Time to first
fixation

23001.663 2 11500.831 2.004 0.156

Experience 8.905 2 4.453 6.842 0.004*

Risk tolerance 0.959 2 0.479 2.543 0.099
Oxy-Hb 0.754 2 0.377 8.005 0.002*

M Time to first
fixation

54704.554 2 27352.277 9.300 0.001*

Experience 8.613 2 4.307 5.717 0.009*

Risk tolerance 0.567 2 0.283 2.129 0.141
Oxy-Hb 0.479 2 0.240 5.327 0.012*

L Time to first
fixation

16251.008 2 81260.504 8.418 0.002*

Experience 8.410 2 4.205 5.717 0.009*

Risk tolerance 1.215 2 0.608 3.325 0.053
Oxy-Hb 0.263 2 0.131 4.386 0.024

Note: *significant at adjusted 0.05 level.
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less than the number of categories in the dependent variable. Thus, two
discriminant functions were derived to weight the four indicators.
Before examining the indicator weights, two tests were applied to assess
the effectiveness of the obtained functions. First, the eigenvalue was
identified to confirm the association between the determinant scores
and those of the groups. This could be revealed by the percentage of the
dependent variable exposed by the model. Concurrently, Wilks’ Lambda
manifests the statistical significance of the discriminatory power of the
derived functions.

Tables 5 and 6 present the results of the eigenvalues and the Wilks’
Lambda tests under various visual clutter levels. Pertaining to the ei-
genvalue tests, larger eigenvalues can be interpreted as higher dis-
criminative ability. Moreover, the percentage of variance denotes the
variation in the dependent variable explained by the corresponding
function. Focusing on the first function, the explained variation is
greater than 72.5% in group M and up to 92.8% in group L.

The values of Wilks’ Lambda in the three visual clutter groups are
0.485, 0.332, and 0.488 (Table 6). This reflects the unexplained var-
iation among the HRA groups. Additionally, the significance of both
canonical correlations (Functions 1 and 2) for H, M, and L is less than
0.05 (p=0.030, 0.002, 0.040, respectively) according to the results
from the Wilks’ Lambda test. This suggests that the differences between
the HRA groups are statistically significant.

From the abovementioned tests, the first function is effective for
explaining the relationship between the four indicators and HRA.

For an in-depth analysis, the standardized canonical discriminant
function coefficients and the structural matrixes displayed in Tables 7
and 8 were analyzed. The structural matrix reveals the order of mag-
nitude of the simple correlation between the functions and the in-
dicators (time to first fixation, Oxy-Hb, experience, and risk tolerance).
The charts reveal that the rank of the relative importance of each in-
dicator differs remarkably.

When visual clutter is high (in group H), the four indicators all
contribute to the first function more than the second one. Specifically,
Oxy-Hb and experience are the most important indicators for HRA,
their absolute correlations being 0.848 and −0.769, respectively. In
group M, time to first fixation and Oxy-Hb make the greatest con-
tribution to the discriminant of the HRA, with correlation coefficients of
−0.817 and 0.624, respectively. Furthermore, risk tolerance is

significant in the first function, whereas experience is more important
in the second function. Regarding group L, the four indicators are all
indispensable for the first function, and time to first fixation again
makes the greatest contribution to the discriminant, with the sub-
maximal weights concerning the absolute correlation coming from ex-
perience, followed by Oxy-Hb (coefficients of 0.875, 0.700, and
−0.628, respectively).

To summarize, time to first fixation makes the greatest contribution
to HRA in groups L and M, followed by Oxy-Hb. For group H, however,
Oxy-Hb is the primary contributor, and time to first fixation ranks last.
As these two indicators represent different cognition processes, this
contrast is vital in the subsequent analysis. Additionally, experience
shares the submaximal weight under extreme visual clutter, namely in
both the L and H groups. Nonetheless, it is not as important in the first
function as it is in the second one in group M. Finally, the risk tolerance
indicator is also significant in all three visual clutter groups, but always
ranks fairly low.

The results of the canonical discriminant functions were visualized
to elaborate the samples distinguished by them (Fig. 4). The figures
depict how HRA was classified by the two discriminant functions. Ap-
parently, the first function, i.e., the horizontal axis, could pinpoint high
HRA from low and medium. The second function, however, could not
identify either case. Moreover, a positive correlation between HRA and
the scores derived from the first function in L can be observed. This
situation contrasts with that for M and H. Combining the figures with
the coefficients in Table 7, it is possible to determine whether the
correlation between the indicators and HRA is positive or negative. In

Table 5
Eigenvalues for the discriminant functions.

Visual
clutter
groups

Function Eigenvalue Percentage of
variance

Cumulative
variance (%)

Canonical
correlation

H 1 0.853 88.3 88.3 0.679
2 0.113 11.7 100.0 0.319

M 1 1.117 72.5 72.5 0.726
2 0.423 27.5 100.0 0.545

L 1 0.914 92.8 92.8 0.691
2 0.071 7.2 100.0 0.258

Table 6
Wilks’ Lambda for the discriminant functions.

Visual clutter
groups

Test of
functions

Wilks’
Lambda

Chi-square df Sig.

H 1–2 0.485 17.019 8 0.030**

2 0.898 2.521 3 0.471

M 1–2 0.332 24.813 8 0.002***

2 0.703 7.940 3 0.047**

L 1–2 0.488 16.147 8 0.040**

2 0.934 1.545 3 0.672

Note: ***: significant at 0.01 level; **: significant at 0.05 level.

Table 7
Standardized canonical discriminant function coefficients.

Visual clutter groups Predictors Function

1 2

H Time to first fixation 0.026 −0.126
Experience −0.592 0.770
Risk tolerance −0.078 −0.387
Oxy-Hb 0.699 0.849

M Time to first fixation −0.879 −0.121
Experience 0.461 1.531
Risk tolerance −0.034 0.405
Oxy-Hb 0.812 0.708

L Time to first fixation 0.631 −0.734
Experience 0.244 1.004
Risk tolerance −0.327 0.538
Oxy-Hb −0.157 −0.371

Table 8
Structural matrix.

Visual clutter groups Predictors Function

1 2

H Oxy-Hb 0.848* 0.481
Experience −0.769* 0.618
risk tolerance 0.473* −0.337
Time to first fixation −0.431* 0.120

M Time to first fixation −0.817* 0.264
Oxy-Hb 0.624* −0.147
risk tolerance 0.397* −0.059
Experience −0.458 0.757*

L Time to first fixation 0.875* −0.173
Experience 0.700* 0.632
Oxy-Hb −0.628* −0.261
Risk tolerance −0.546* 0.264

Note: *: Largest absolute correlation between each variable and any dis-
criminant function
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particular, a negative coefficient in the M and H groups suggests a
positive correlation between the indicator and the levels of HRA, as it
helps to generate a lower discriminant score. The values of the in-
dicators are consistent across the visual clutter groups. Time to first
fixation and experience are always positive with respect to HRA,
whereas risk tolerance and Oxy-Hb are always negative.

The classification results are provided in Table 9. The resubstitution
values illustrate the percentage of correctly identified samples through
the discriminant scores. Cross-validation tests were conducted for ver-
ification purposes. According to the resubstitution results, 67.9% (H)
and 74.1% (M and L) of the samples were correctly classified by the
discriminant functions. As expected, the correct classification rates
decreased following the cross-validation test, falling to 48.1%, 55.6%,
and 53.6% for L, M, and H, respectively. Considering the complexity of
the hazard identification process, a correct classification rate of greater
than 33% (the probability of randomly being correctly classified) is
acceptable.

5. Discussion

5.1. Relationships between HRA and indicators

5.1.1. Self-reporting indicators
In the three visual clutter groups, the self-reporting indicators of

experience and risk tolerance are correlated with HRA, as generally
expected. Higher experience implies better HRA. This is because those
who work in the laboratory frequently will be better acquainted with
the hazards in the lab, attain higher scores in the risk knowledge test,
and recognize hazards more accurately in the experiment than those
who do not. This conclusion verifies the consensus from previous stu-
dies that the accumulation of experience on construction sites enhances
hazard perception ability. In contrast, risk tolerance is negatively cor-
related with HRA. This negative relationship manifests itself as parti-
cipants with higher risk tolerance identifying fewer hazards than those
with lower risk tolerance. The result is consistent with prior studies as
well as the definition of the variable: defined as “the number of risks
that individuals are willing to accept in the pursuit of some goal”

(Hunter, 2002; Roszkowski and Davey, 2010), high risk tolerance im-
plies the inclination to endure a risky working environment.

5.1.2. Physiological metrics
The results of this research also show inconsistencies beyond gen-

eral expectations. The two physiological metrics reveal that a different
cognition paradigm from that of the image-based experiments was
employed for hazard detection. Specifically, the discrepancies of both
the eye-movement metric (time to first fixation) and the NIRS metric
(Oxy-Hb) across the HRA groups were incompatible with the results
derived by previous studies.

The values of time to first fixation in the AOIs were increased in the
high HRA groups. This suggests that participants with higher HRA spent
more time scanning the environment before initially allocating their
attention to the hazardous areas. In contrast, participants with worse
HRA fixated on the hazards faster. Such results are similar to those
reported in the study of Hasanzadeh et al (2017a). Many previous
studies, however, regarded less time observing “distractions” as better
performance in the visual search (Brockmole and Henderson, 2006;
Dong et al., 2018). These empirical studies were based on experiments
utilizing images as the stimuli. Nonetheless, the processes of visual
search and situation awareness differ considerably in real construction
environments. The observers spend more time scrutinizing their sur-
roundings and inspecting each object meticulously. Brockmole and
Henderson (2006) found that, in real-world scenes, attention allocation
is initially driven by scene identity. Subsequently, the shifts of attention
are guided by detailed information regarding scene and object layout.
Specifically, this effect, called contextual cueing, identifies the promi-
nence of task-relevant information provided by the surroundings
around the search target. Through spatial inference of the relationships
between the distractors, participants were able to perceive an integral
comprehension of the scene and better analyze the potential hazards
(Henderson, 2003). Moreover, in the individual interviews following
the experiment, several participants reported that they could extract
little information from the surroundings, and so guided their attention
directly to plausible hazards. This could be explained by the stimulus-
based gaze control introduced by Henderson (2003). In stimulus-based
gaze control, the uniform regions along some dimension are unin-
formative, and thus guide the spatial gaze distribution. Although dif-
fering in dimensions such as color and intensity, the unfamiliar regions
providing insufficient information were uniform for participants with
low HRA, who hence obtained fewer fixations.

As for Oxy-Hb, it was found to decrease when HRA was higher. This
means that, compared with low HRA participants, the concentration of
oxygenated hemoglobin in the PFC of the high HRA participants was

Fig. 4. Canonical discriminant function. Note: 1= low HRA group; 2=medium HRA group; 3= high HRA group. The full color version of this figure is available
online.

Table 9
Classification accuracy for HRA.

Visual clutter groups Resubstitution Cross-validated

H 67.9% 53.6%
M 74.1% 55.6%
L 74.1% 48.1%
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lower. Undoubtedly, this finding is important in the cognitive process of
hazard perception. Previous studies reported various results across
participant groups for various task conditions. Durantin et al. (2014)
found that, under a high processing load, Oxy-Hb increased in hard
control conditions during a simulated piloting task compared with that
in easy control conditions. However, the opposite results were found
under a low processing load. Kojima and Suzuki (2010) conducted a
visual search experiment and found significant correlations between
changes in Oxy-Hb and attention strength. Specifically, the enhance-
ment in Oxy-Hb was greater for subjects who could not find a target
under attentional conditions. Generally, lower Oxy-Hb is explained as
certain brain regions being less active (Liu et al., 2016). Kojima and
Suzuki (2010) inferred that Oxy-Hb increased substantially when the
observers could not find the target, and thus kept looking at the visual
scene. Once the observers found the target, however, they no longer
needed to pay attention to the stimuli, and the Oxy-Hb stopped rising.
This offers inspiration for the present study. Regarding the attention
effect, participants with high HRA might be more convinced of their
judgment regarding hazards. Those with low HRA, however, might
hesitate to make a decision, and hence paid more attention to potential
hazards. Thus, the constant attention produced a strong activation in
the brain.

5.2. Discrimination power of indicators

The variation and discrimination power of each indicator differed
considerably in the three visual clutter groups. According to the uni-
variate ANOVA, experience always showed significant variance across
the HRA groups, whereas risk tolerance showed no significant variance.
Moreover, significant discrepancies in time to first fixation were ob-
served under relatively low visual clutter, namely the L and M groups.
Intriguingly, Oxy-Hb changed in the M and H groups. As for the dis-
crimination power, the results were quite similar. Risk tolerance had a
relatively poor power for predicting HRA (ranked in the lower half for
all three groups), and experience showed unstable explanation power,
with strong performance in groups L and H but poor performance in
group M. Taking the physiological indices into account, time to first
fixation had a strong power for prediction in groups L and M, whereas
Oxy-Hb performed better in the M and H groups. Generally, the dis-
criminant power of the physiological indices was stronger than that of
the personal characteristics. This serves as an important signal in ac-
knowledging the priority of the inspection process, namely the phy-
siological indices, for HRA prediction. Many researchers have empha-
sized the process of hazard identification as a significant barrier to
improving hazard detection (Bahn, 2013). Certainly, the low efficiency
of training and knowledge absorption leads to a poor correlation be-
tween training and work experience and between training and HRA
(Perlman et al., 2014).

Additionally, the results reveal that cognitive discrepancies in ha-
zard identification can be attributed to the different search phases ac-
cording to the level of visual clutter. Disparities in time to first fixation
contributed more to HRA prediction when visual clutter was relatively
low, while variations in Oxy-Hb were more significant under high vi-
sual clutter. Taking the two cognitive phases represented by the two
metrics into consideration, this conclusion illustrates that participants
with high HRA spent more time looking around the whole environment
under low visual clutter than those with poor HRA. When the visual
clutter was high, however, the cluttered objects in the visual field
caused the participants significant distraction and confusion. Thus,
those with low HRA had to concentrate to deconstruct the scene and
extract effective information for decision-making, leading to a high
level of Oxy-Hb. Discrepancies in the time spent on observing the sur-
roundings were not significant, as the cluttered visual field also de-
manded attention for those with low HRA.

In conclusion, our analysis reveals that different cognitive strategies
were employed to accommodate the change in visual clutter. Under low

visual clutter (Fig. 5(a), for example), the main variation lies in the
saccade phase. Having little knowledge about the site risks, participants
with low HRA could attain little information from the surroundings. In
contrast, the uncluttered scene was still informative for those who
performed better, and thus more time was spent observing the scene.
When visual clutter was high (Fig. 5(b), for example), all participants
had to analyze the surroundings for some time. However, the partici-
pants who performed better encountered little uncertainty in terms of
hazard identification. On the contrary, participants with low HRA
concentrated more on their judgment, and this caused more active
cerebral oxygen metabolism. As for HRA prediction, given the limited
representation efficiency for the judgment phase by the eye-movement
metrics, the level of Oxy-Hb is an essential measurement for further
consideration.

5.3. Overall prediction of the HRA index

The classification results indicated a firm prediction capacity. The
discriminant functions derived in this study could identify the workers’
HRA with accuracy ranging from 67.9 to 74.1% across the visual clutter
groups. Concurrently, the cross-validated accuracy rates ranged from
48.1 to 55.6%. This performance is superior to that reported in other
studies (Hasanzadeh et al., 2017b). It has been claimed (Yang et al.,
2010; Dong and Hu, 2011) that a hybrid system introducing several
multimodal indicators would be fairly robust. The predictive power of
the proposed HRA index has demonstrated the effectiveness of hybrid
prediction systems by involving multiple monitoring devices and psy-
chological scales. Specifically, the innovative use of NIRS devices
proved to be valuable, allowing cognitive discrepancies to be dis-
tinguished in the decision phase. Additionally, the psychological (risk
tolerance) scale proved to be effective in predicting HRA. Furthermore,
the experimental paradigm of a real-world inspection task makes the
results authentic and convincing.

6. Conclusions

This research has developed an HRA index engaging both physio-
logical and psychological indicators. For data collection, a real-world

Fig. 5a. Hazard 3 in group L.

Fig. 5b. Hazard 9 in group H.
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task-based experiment was conducted. Portable eye-tracking and NIRS
devices were equipped for multimodal monitoring. Subsequently,
MANOVA and discriminant analysis were utilized for factor analysis
and HRA prediction across different visual clutter groups. The results
revealed that different search strategies are employed by people in
different HRA groups, and thus verified the prediction efficiency of the
proposed HRA index. The theoretical and practical contributions of this
study are summarized as follows.

6.1. Theoretical contributions to HRA

First, this study successfully developed an HRA index that was
shown to provide accurate HRA predictions from self-reported metrics
and vital signs, including eye movement and vascular response. The
theoretical basis for the proposed HRA index digs deep into the cog-
nitive process of HR. It reveals the different search strategies employed
by observers of various HRA levels and across visual clutter groups.
Specifically, observers with high HRA spend more time on the search
phase in low visual clutter, and the prefrontal lobe is less activated in
high visual clutter cases. Such results are quite different from those of
previous studies. The real-world experimental protocol, however, was
shown to be credible through a simulated HR task. In addition, ac-
cording to the index, the predictive power of the vital signs is greater
than that of the self-reported metrics. This indicates the importance of
embedding monitoring devices such as eye trackers and NIRS devices.
By initially introducing the NIRS method, our knowledge of the deci-
sion phase was extended and unified. The effectiveness of the multi-
modal fusion method based on a hybrid monitoring system is expected
to inspire researchers to conduct further studies.

6.2. Practical application suggestions

By applying the proposed HRA index, it is possible to predict the
HRA of an inspector or worker on site through his/her experience, risk
tolerance, eye-movement (namely time to first fixation), and vascular
response (namely Oxy-Hb). The prediction method is based on real-time
monitoring rather than a comparison with some presupposed task ex-
ecution. Thus, it is robust and repeatable. A continuous assessment
could be conducted without sophisticated preparation to analyze the
HRA promotion of the staff. Therefore, the proposed HRA index is va-
luable for jobsite HRA estimation, which serves as a reference for fur-
ther occupational environment management (Perlman et al., 2014).

Regarding the practical implications of the HRA index, it provides
more information than mere HRA levels. The advantage is that each of
the four indicators is associated with one specific aspect of the cognitive
process. Therefore, both vulnerable and reliable processes can be
identified. For instance, a worker with high HRA is likely to have a
relatively long time to first fixation in low visual clutter scenes, ac-
cording to the discussion in Section 5. Thus, if a worker was ranked as
low HRA because of his/her short time to first fixation in low visual
clutter, this would be a signal of poor performance in the search phase.
For the subsequent training plan, the improvement of perception ability
should be the focal point for the worker. In addition, managers can
allocate tasks according to worker’s HRA performance in different
jobsite settings. Such insight regarding HRA helps to improve occupa-
tional safety related to the indistinct comprehension of HR failure
(Namian et al., 2016).

6.3. Limitations and future research

Despite our best attempts in this pilot study, e.g., the real-world HR
task and controlled approach to capture physiological data, certain
limitations and challenges still remain to be addressed in future re-
search. First, as a pilot study, civil engineering students were employed
rather than workers. Differences between HR processes may exist be-
cause civil experiments are different from construction work.

Additionally, the number of participants constrains this study to a small
sample-based trial. Thus, readers should interpret the results cautiously.
Second, unexpected influences from mobile participants may exist, al-
though previous studies praised NIRS devices for their insensitivity to
body movement (Liu et al., 2016).

Based on this trial, efforts could be focused on promoting experi-
ments for future research. Researchers could attempt to involve real
construction sites and large sample sizes. In addition, NIRS and eye
movement data were employed as independent variables. The interac-
tion between the two variables during hazard recognition may be in-
teresting, and researchers could explore this in future studies.
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